Solving for unknown CFi using the HP-12C NPV

Tony Hutchins, #1049

A 3-step method is used, the essentials of which are:

1. Input the complete transaction time-line including known CF_j , and with the unknown CF_j set to zero. Then f NPV PMT.

2. Set the unknown $CF_i = 100$ (pro rata if necessary). Then **f** NPV.

3. Run the following program: RCL PMT RCL PV - RCL PMT %T 9 GTO 00.

The unknown CF₁ is then displayed. Five different types of usage follow:

1. Construction Loan (multiple advance transaction)

\$20,000 is advanced on the 15th of April, June and September. This \$60,000 is to be repaid by 240 monthly instalments, the first due on 15th December. Find the monthly repayment rate assuming 10.25% interest.

f CLEAR REG 10.25 9 12÷ 20000 9 CFo

0 g CFj	RCL09CFj	0 g CFj 2 g Nj	RCL 0 9 CFj
0 9 CFj 2 9 Nj	0 9 CFj 80 9 Nj	0 9 CFj 80 9 Nj	0 g CFj 80 g Nj
f NPV PMT	100 STO 6 STO 7 STO 8	f NPV R/S	see: -612.93

2. Increasing Annuity (arithmetic progression)

A new business with growth prospects borrows \$30,000 repayable over 5 years at 15%, and negotiates a scheme of 5 annual repayments increasing by \$3,000 a year. What is the amount of the first year's repayment?

f CLEAR REG 15 i 30000 CHS 9 CFo

0 g CFj	3000 ENTER ENTER ENTER 9 CFi	+ g CF _j	+ g CFj
+ g CFj	f NPV PMT	100STO1STO+2	STO + 3
STO + 4	RCL5+STO5	f NPV R/S	see: 3781.02

3. Photocopier Lease (Advance Payments with Residual)

Taken from page 176 of the *HP-12C Owner's handbook*. 4 lease payments made at the outset, then 44. Term is 48 months with 30% residual. Based on \$22,000 value the residual is \$6,600. Find the monthly payment assuming 15% interest. The book uses a 27 line program. Here (and in example 4) the 100 is also applied pro rata.

f CLEARREG 15 9 12÷ 22000 CHS 9 CFo

0 9 CFj 44 9 Nj	0 9 CFj 3 9 Nj	6600 g CFj	f NPV PMT
400 STO ± 0	100 STO 1	f NPV R/S	see: 487.29

4. Graduated Payment Mortgage (geometric progression)

Taken from page 35 of the *HP-12C Solutions Handbook*. \$50,000 repayable monthly with 5% increases in first 6 years and constant thereafter. 30 year term. 12.5% interest. Find payments for years 1-6 and balances at the end of years 1-5. Book has a 77 line program. The rounding below (in f(2) just emulates the book.

0 9 CFj 12 9 Nj	0 9 CFj 12 9 Nj	0 g CFj 12 g Nj	0 g CFj 12 g Nj		
0 9 CFj 12 9 Nj	0 g CFj 96 g Nj	0 g CFj 96 g Nj	0 g CFj 96 g Nj		
0 9 CFj 12 9 Nj	(no need for NPV)	1.05 ENTER ENTER ENTER	100STO1		
X STO2 X STO3	X STO4 X STO5	X STO6STO7	STO8STO9		
f NPV R/S	see: 448.88, STO 1	RCL2%	see: 471.33, STO 2		
CLX RCL 3 %	see: 494.89, STO 3	CLX RCL 4 %	see: 519.64, STO 4		
CLX RCL 5 %	see: 545.62, STO 5	CLX RCL 6 %	see: 572.90		
Then: 0 PMT, RO	CL1 f RND STO1, R	RCL 2 f RND STO 2,	RCL 3 f RND STO 3.		

RCL 4 f RND STO 4, and RCL 5 f RND STO 5 sets up data for the balances:

1 n f NPV 12 n FV s	see: 50,914.67	2 n f NPV 24 n FV	see: 51,665.07
3 n f NPV 36 n FV s	see: 52,215.34	4 n f NPV 48 n FV	see: 52,523.85
5 n f NPV 60 n FV s	see: 52,542.97		

5. Bulldozer Purchase (skipped payments)

Taken from page 39 of the *HP-12C Solutions Handbook*. \$100,000 repayable over 5 years at 14%. Find monthly repayment. Jan-Mar skipped. Loan drawn in Sept. Book has a complex 10 step keystroke solution, ingenious but challenging to *understand*, and without the usual practical explanation, which is understandable as the formula used is condensed. This at least sets out a clear time-line:

0 g CFj 3 g Nj	0 g CFj 3 g Nj	0 g CF _j 9 g N _j	0 g CFj 3 g Nj	
0 g CF _j 9 g N _j	0 9 CFj 3 9 Nj	0 g CF _j 9 g N _j	0 g CFj 3 g Nj	
0 g CF _j 9 g N _j	0 9 CFj 3 9 Nj	0 g CFj 6 g Nj	(no need for NPV)	
100STO1STO3	STO5STO7STO9	STO.1 f NPV R/S	see: 3119.89	

f CLEAR REG 14 9 12÷ 100000 CHS 9 CFo PMT

Notes

The tables above are intended to be read/actioned across and down, and the first cells up to f <u>PMT</u> or "(no need for PV)" always *correspond* to sequential storage register content, like so:

Register 1	Register 2	Register 3	Register 4
Register 5	Register 6		

100 is used as a basis for the unknown cashflows as it causes sufficient perturbation in the NPV to ensure a solution of adequate accuracy. Note that this technique leaves the known cashflows intact, unless an unknown cashflow has simultaneous incidence (see 2 & 3), thus facilitating further variations to be investigated without too much effort. In 4 & 5 PMT=CF₀ as only CF₀ is known.