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According to Wlodek’s superb “Guide to HP Handheld Calculators and Computers”, 
the HP-15C was released in July, 1982, and it was meant to be the top scientific model 
of the Voyager series, looking like the earlier HP-11C, its able sibling, but featuring 
vastly improved capabilities. The HP-15C’s 20 th anniversary has recently passed by, 
and some words commemorating the event are long overdue, thus this article. 
 
Matter of fact, the HP-15C was an incredibly advanced calculator for its time, and 
arguably it’s one of the best calculators ever produced by HP. The fact that so many 
advanced features could be packaged in such a clever way makes it absolutely plain that 
lots of pretty clever thinking were applied to its design. Everything, from the physical 
characteristics of the Voyager series (ultra-low power drain, solid feel, best 
keyboard, clearest display, most pocketable), to the ultra-accurate algorithms 
implemented (theoretically  best for all arithmetic functions, best practically 
feasible for the rest), to the function set (all logical tests, trascendental functions 
including hyperbolics even for complex arguments, flags, full statistics, gamma, 
combinations, permutations, random numbers), plus cutting-edge advanced 
capabilities (complex numbers perfectly integrated down to a full complex RPN 
stack, matrix operations with multiple matrices and dynamic memory allocation, 
Solve, Integrate). The whole set was unbelievable at the time, and still is ! 
 
Now, let’s say something about each characteristic outlined above, not in an exhaustive 
style (that would take a whole book !), but pointing out specific facts. 

 
First of all, the keyboard layout . It’s really amazing that the designers could fit all the 
many extra functions and features in the same number of keys as the HP-11C, while 
keeping just the [f] and [g] prefix keys. A lot of creative thinking was called for, such 
as using a single TEST n instruction in lieu of ten logical tests, thus freeing 9 
keyboard positions. Next, many keyboard positions were simply reused, by 
overloading them with new functionalities. For example, the [+] key isn’t now limited 
to just adding numbers, but can also add complex values and matrices as well. Other 
operations are likewise extended, either naturally (the [÷] key solving a system of  
linear equations when applied to matrices), or not-so-naturally (the Cx,y and Px,y 
computing combinations and permutations respectively if the arguments are integers, 
else performing some complex transformations if the arguments are matrices). There 
are many instances of smart design all over the keyboard: multiple uses of [I] and 
(i), STO and RCL admit lots of arguments, operations and functionality (think of 



“user” STO, for instance, or RCL arithmetic). Never before had so much thought been 
given to a small calculator’s keyboard layout. 
 
Secondly, the superb numerical algorithms. They are absolutely top-of-the-line, 
theoretically researched and designed by W. Kahan, a first-magnitude authority on the 
matter, who had already worked in other HP models such as the HP-91 and the HP-
34C. For the HP-15C he excelled himself, and the results are unique, boasting the 
maximum realizable precision for every operation and function, whether arithmetic, 
transcendental, complex or matricial. The HP-15C’s algorithms were used as the basis 
for the HP -41C Advantage ROM, the HP-71C Math ROM, the HP-28S, and the HP-
42S, all the way up to the latest RPL models. 
 
Thirdly, the instruction set is astonishingly comprehensive, including every function 
and feature of practical interest, most of them defined even for complex arguments. 
Amazingly, its capabilities are even more complete than those of the much larger (and 
much  more expensive !) HP-71B, even with the Math ROM plugged-in. For instance, 
you can use SIN with complex arguments in both the HP-15C and the HP-71B+Math 
ROM. But you can’t use the inverse function SIN-1 for complex arguments with the 
71B+Math ROM ! Same for the rest of inverse trigonometric and hyperbolic 
functions. The HP-15C has no such limitation. The integration of complex numbers 
with the function set is so thorough that it even features a complete, dynamically 
allocated RPN stack for complex numbers, LAST X and all. The result: working with 
complex values in RPN as easily as with real values. 
 
And last but not least, the programming features and advanced capabilities. Not 
only does it include double the memory of the HP-11C, but you have lots of new 
features that tremendouly increase its power. Like 10 flags, all 12 conditionals, and 
recall arithmetic. Like dynamic memory allocation and being able to use DSZ and 
ISG on registers other than the I register. Like using matrix descriptors and a 
parallel stack  so that you can have up to 5 matrices and/or complex numbers on the 
stack at once. Like the User keyboard and “user” functions, which automatically 
increment the row/column indexes of matrices so that you can input/output their 
elements using just one STO/RCL instruction per element, with the added program-
mode capability to automatically perform a logical test and terminate the loop if the 
last element has been processed, all with a single STO or RCL ! (this test capability is 
also featured in other advanced functions, including SOLVE and INTEG). Add to that a 
comprehensive set of matrix operations, including both scalar and matrix arithmetic, 
assignment, transpose, inverse, system solving, determinant, norms, residuals, 
transformations, and even the possibility of working with complex matrices. How’s 
that for a most complete feature set ! Let’s put it to work ! 



A sample program: computing up to 208 decimal digits of e 
 
Here is a small HP-15C program that I wrote specifically for this article, to give a 
glimpse of its programming features. This 64-step program will compute from 8 to 
208 decimal places of Euler’s constant , the well-known transcendental number e = 
2.71828+ . It is by no means optimized for performance but tries instead to be as short 
and straightforward as possible. Although you can compute more decimal places in an 
HP-15C, for the purposes of this article this simpler program will do nicely. 
 
Program listing 
 

• Very Important: steps 30 and 43 must be entered in USER mode, while all 
the rest must be entered out of USER mode. An u-like character must 
appear next to the step number only for steps 30 and 43, and no others. 

 
01  LBL A         23  RCL A         45  FRAC 
02  MATRIX 0      24  X=0?          46  CHS 
03  MATRIX 1      25  ISG 2         47  RTN 
04    1           26  LBL 0         48  LBL 5 
05  DIM A         27  RCL A         49  FRAC 
06  DIM B         28  RCL÷ I        50  RCL B 
07  RESULT B      29  INT           51  INT 
08  STO 2         30u STO A         52  RCL RAN# 
09  STO I         31  GTO 2         53    * 
10   EEX          32  RCL I         54    + 
11    8           33  PSE           55   R/S 
12  STO A         34  RCL MATRIX A  56  GTO 4 
13   1/X          35  MATRIX 7      57  LBL 2 
14  STO RAN#      36  TEST 0        58  RCL* I 
15  LBL 1         37  GTO 1         59    - 
16  RCL MATRIX A  38  RCL MATRIX B  60  RCL RAN# 
17  RCL MATRIX B  39  RCL RAN#      61    ÷ 
18    +           40    *           62  STO+ A 
19  RCL 2         41  FIX 8         63  RCL A 
20  STO O         42  LBL 4         64  GTO 0 
21  ISG I         43u RCL B         
22  LBL 3         44  GTO 5        

 
Data Register usage 
 

RI   current divisor (2, 3, ...) 
R00  row index for matrix elements 
R01  column index for matrix elements 



R02  index of first non-zero block 
Notes 
 
• The constant e is computed using the well-known formula:  

e = 1 + 1/1! +1/2! + 1/3! + 1/4! + ... 
using  enough terms to achieve the desired precision. We use the powerful matrix 
capabilities of the HP-15C, holding the current term in a vector (matrix A), and the 
running sum in another vector (matrix B). Steps 01-14 dimension and initialize 
both matrices, as well as some indexes and ancillary constants. 

 
• Starting with 1, each term is computed by dividing the previous one by the 

corresponding divisor up to a maximum of 208 decimal digits, until we arrive at a 
term that is zero to the specified precision. This multiprecision arithmetic is done 
by considering each term as composed of N blocks (1-26), each holding 8 digits, 
the extra digits in each register being carried out to the next block. Since we may 
use divisors up to 125, each block is limited to 8 digits, lest the carry would make 
the next block larger than the 10 digits an HP-15C storage register can hold. 

 

• The addition of each multi-block term to the running total is done using matrix 
arithmetic in steps 16-18. Steps 19-25 increment the divisor and keep track of the 
first non-zero block of each term to optimize speed by avoiding unnecesary 
operations. Steps 26-31 and 57-64 perform the multiprecision division. 

 

• The process ends when the current term has all its blocks equal to zero. As all 
blocks always hold positive values, we can use an advanced matrix operation, the 
Row Norm, to test for finalization, because in this case the Row Norm will equal 
zero if and only if all block values are zero. This is tested in steps 34-37.  

 

• Once this condition is met, the result matrix which holds the running sum is scaled 
down for display using matrix-scalar arithmetic (steps 38-40). The computed 
answer is then displayed by recalling each block in turn, adding the carry from the 
previous block, and marking the last one negative (steps 41-56).  

 

• As you can see, though simple, this program does use some of the HP-15C’s 
advanced programming capabilities (as well as a trick or two), including basic 
matrix operations (MATRIX 1), advanced matrix functions (MATRIX 7),  recall 
arithmetic (RCL÷ I), using registers as indexes including increment-and-test 



operations (ISG 2) , auto-increment-test-and-loop matrix element access (uSTO 
A, uRCL B), matrix arithmetic (steps  18 and 40), etc.   

 

• Among the tricks, the use of  the fast, 1-byte instructions STO RAN# and RCL 
RAN#, demonstrating a way to store/recall a positive constant less than 1 without 
using any regular data registers. As long as you don’t use random numbers (or 
you don’t mind changing the seed at that point) this trick can save you a full 
register, as well as being faster than having the constant repeated in your program 
code.  

Caveat emptor: It only works for numbers in [0..1). Try other values (Pi, 
for instance) and see what happens on recall. This can be used for some 
pretty efficient 10-power scaling ) 

 
Usage instructions 
 

1) After keying in the program, make sure you’re not in complex mode (press CF 
8 if in doubt), then you must commit enough storage registers to the common 
pool for the matrix operations. To that effect, press: 

 
2, f DIM (i) 

 
2) Now, enter the number of 8-digit blocks you want to use, from 1 (8 digits) to 

26 (208 digits). For example, if you want to compute 200 decimal digits of e, 
you must specify 200/8 = 25 blocks. Start the program by pressing either  

 
f PRGM, R/S or GSB A or (in User mode) A 

 
While running, it will briefly show each succesive divisor used (2, 3, ...), then 
once the computation is over, it will display each block of 8 decimal digits 
(with an initial “0.”, in order to preserve leading zeros at the left end of the 
block), starting with decimals 1st-8th. The very last block will be marked 
negative, to signal the end of the output. 

 
Let’s see an example: to compute the first 24 decimal digits of e, we specify 
24/8 = 3 blocks, and proceed like this (in USER mode): 

 
   3, A à   (2.00000000)   [divisor = 2] 

              ...      [after 2’26”] 
     à  (25.00000000)   [divisor = 25] 

       à    0.71828182   [decimals  1st- 8th] 



R/S  à    0.84590452    [decimals  9th-16th] 
  R/S  à   -0.35360274   [decimals 17th-24th] 
   

so, after adding a “2.” at the front and writing down all 8-digit blocks (that is, 
minus the initial “0.” or “-0.”) in their proper order, we finally get: 

 
e = 2.71828182 84590452 35360274 
 

where, due to the accumulation of rounding errors during the process, the last 
block of the computed answer comes out as “3536 0274” while correct is 
“3536 0287”, so we have an error of 13 ulps (units in the last place). 

 
3) Should you need to display the output again, press:   GSB 4 

 
Assorted results 
 
# blocks # decimals Max. divisor Time Last block Error (ulps) 

1 8 12 40” 71828178 -4 
3 24 25 2’26” 35360274 -13 
5 40 35 4’43” 24977552 -20 
13 104 73 19’55” 42742712 -34 
26 208 125 62’43” 15738281 -60 

 
As you can see, you can compute 100 decimal digits of e in your HP-15C in under 20 
min., and 200 in under one hour. For 208 decimal digits,  the final result is: 
 
     e = 2.71828182 84590452 35360287 47135266 24977572 
           47093699 95957496 69676277 24076630 35354759 
           45713821 78525166 42742746 63919320 03059921 
           81741359 66290435 72900334 29526059 56307381 
           32328627 94349076 32338298 80753195 25101901 
           15738281 
 
The last block of the computed answer comes out as “1573 8281” while correct is 
“1573 8341”, so the error is 60 ulps, and thus we’ve got 206 decimals fully correct. 
 
Final remarks 
 
Well,  I certainly hope this commemorative article has revived fond memories of the 
HP-15C and increased your  appreciation of this finest HP-model. I‘ll consider myself 
satisfied if you’ll contemplate the HP-15C in a different perspective from now on, as 
the technical marvel and supreme engineering tour-de-force it actually is. 


