
Long Live the HP-15C !

Valentín Albillo (Ex-PPC #4747, HPCC #1075)

According to Wlodek’s superb “Guide to HP Handheld Calculators and Computers”,
the HP-15C was released in July, 1982, and it was meant to be the top scientific model
of the Voyager series, looking like the earlier HP-11C, its able sibling, but featuring
vastly improved capabilities. The HP-15C’s 20 th anniversary has recently passed by,
and some words commemorating the event are long overdue, thus this article.

Matter of fact, the HP-15C was an incredibly advanced calculator for its time, and
arguably it’s one of the best calculators ever produced by HP. The fact that so many
advanced features could be packaged in such a clever way makes it absolutely plain that
lots of pretty clever thinking were applied to its design. Everything, from the physical
characteristics of the Voyager series (ultra-low power drain, solid feel, best
keyboard, clearest display, most pocketable), to the ultra-accurate algorithms
implemented (theoretically best for all arithmetic functions, best practically
feasible for the rest), to the function set (all logical tests, trascendental functions
including hyperbolics even for complex arguments, flags, full statistics, gamma,
combinations, permutations, random numbers), plus cutting-edge advanced
capabilities (complex numbers perfectly integrated down to a full complex RPN
stack, matrix operations with multiple matrices and dynamic memory allocation,
Solve, Integrate). The whole set was unbelievable at the time, and still is !

Now, let’s say something about each characteristic outlined above, not in an exhaustive
style (that would take a whole book !), but pointing out specific facts.

First of all, the keyboard layout . It’s really amazing that the designers could fit all the
many extra functions and features in the same number of keys as the HP-11C, while
keeping just the [f] and [g] prefix keys. A lot of creative thinking was called for, such
as using a single TEST n instruction in lieu of ten logical tests, thus freeing 9
keyboard positions. Next, many keyboard positions were simply reused, by
overloading them with new functionalities. For example, the [+] key isn’t now limited
to just adding numbers, but can also add complex values and matrices as well. Other
operations are likewise extended, either naturally (the [÷] key solving a system of
linear equations when applied to matrices), or not-so-naturally (the Cx,y and Px,y
computing combinations and permutations respectively if the arguments are integers,
else performing some complex transformations if the arguments are matrices). There
are many instances of smart design all over the keyboard: multiple uses of [I] and
(i), STO and RCL admit lots of arguments, operations and functionality (think of

“user” STO, for instance, or RCL arithmetic). Never before had so much thought been
given to a small calculator’s keyboard layout.

Secondly, the superb numerical algorithms. They are absolutely top-of-the-line,
theoretically researched and designed by W. Kahan, a first-magnitude authority on the
matter, who had already worked in other HP models such as the HP-91 and the HP-
34C. For the HP-15C he excelled himself, and the results are unique, boasting the
maximum realizable precision for every operation and function, whether arithmetic,
transcendental, complex or matricial. The HP-15C’s algorithms were used as the basis
for the HP -41C Advantage ROM, the HP-71C Math ROM, the HP-28S, and the HP-
42S, all the way up to the latest RPL models.

Thirdly, the instruction set is astonishingly comprehensive, including every function
and feature of practical interest, most of them defined even for complex arguments.
Amazingly, its capabilities are even more complete than those of the much larger (and
much more expensive !) HP-71B, even with the Math ROM plugged-in. For instance,
you can use SIN with complex arguments in both the HP-15C and the HP-71B+Math
ROM. But you can’t use the inverse function SIN-1 for complex arguments with the
71B+Math ROM ! Same for the rest of inverse trigonometric and hyperbolic
functions. The HP-15C has no such limitation. The integration of complex numbers
with the function set is so thorough that it even features a complete, dynamically
allocated RPN stack for complex numbers, LAST X and all. The result: working with
complex values in RPN as easily as with real values.

And last but not least, the programming features and advanced capabilities. Not
only does it include double the memory of the HP-11C, but you have lots of new
features that tremendouly increase its power. Like 10 flags, all 12 conditionals, and
recall arithmetic. Like dynamic memory allocation and being able to use DSZ and
ISG on registers other than the I register. Like using matrix descriptors and a
parallel stack so that you can have up to 5 matrices and/or complex numbers on the
stack at once. Like the User keyboard and “user” functions, which automatically
increment the row/column indexes of matrices so that you can input/output their
elements using just one STO/RCL instruction per element, with the added program-
mode capability to automatically perform a logical test and terminate the loop if the
last element has been processed, all with a single STO or RCL ! (this test capability is
also featured in other advanced functions, including SOLVE and INTEG). Add to that a
comprehensive set of matrix operations, including both scalar and matrix arithmetic,
assignment, transpose, inverse, system solving, determinant, norms, residuals,
transformations, and even the possibility of working with complex matrices. How’s
that for a most complete feature set ! Let’s put it to work !

A sample program: computing up to 208 decimal digits of e

Here is a small HP-15C program that I wrote specifically for this article, to give a
glimpse of its programming features. This 64-step program will compute from 8 to
208 decimal places of Euler’s constant , the well-known transcendental number e =
2.71828+ . It is by no means optimized for performance but tries instead to be as short
and straightforward as possible. Although you can compute more decimal places in an
HP-15C, for the purposes of this article this simpler program will do nicely.

Program listing

• Very Important: steps 30 and 43 must be entered in USER mode, while all
the rest must be entered out of USER mode. An u-like character must
appear next to the step number only for steps 30 and 43, and no others.

01 LBL A 23 RCL A 45 FRAC
02 MATRIX 0 24 X=0? 46 CHS
03 MATRIX 1 25 ISG 2 47 RTN
04 1 26 LBL 0 48 LBL 5
05 DIM A 27 RCL A 49 FRAC
06 DIM B 28 RCL÷ I 50 RCL B
07 RESULT B 29 INT 51 INT
08 STO 2 30u STO A 52 RCL RAN#
09 STO I 31 GTO 2 53 *
10 EEX 32 RCL I 54 +
11 8 33 PSE 55 R/S
12 STO A 34 RCL MATRIX A 56 GTO 4
13 1/X 35 MATRIX 7 57 LBL 2
14 STO RAN# 36 TEST 0 58 RCL* I
15 LBL 1 37 GTO 1 59 -
16 RCL MATRIX A 38 RCL MATRIX B 60 RCL RAN#
17 RCL MATRIX B 39 RCL RAN# 61 ÷
18 + 40 * 62 STO+ A
19 RCL 2 41 FIX 8 63 RCL A
20 STO O 42 LBL 4 64 GTO 0
21 ISG I 43u RCL B
22 LBL 3 44 GTO 5

Data Register usage

RI current divisor (2, 3, ...)
R00 row index for matrix elements
R01 column index for matrix elements

R02 index of first non-zero block
Notes

• The constant e is computed using the well-known formula:

e = 1 + 1/1! +1/2! + 1/3! + 1/4! + ...
using enough terms to achieve the desired precision. We use the powerful matrix
capabilities of the HP-15C, holding the current term in a vector (matrix A), and the
running sum in another vector (matrix B). Steps 01-14 dimension and initialize
both matrices, as well as some indexes and ancillary constants.

• Starting with 1, each term is computed by dividing the previous one by the

corresponding divisor up to a maximum of 208 decimal digits, until we arrive at a
term that is zero to the specified precision. This multiprecision arithmetic is done
by considering each term as composed of N blocks (1-26), each holding 8 digits,
the extra digits in each register being carried out to the next block. Since we may
use divisors up to 125, each block is limited to 8 digits, lest the carry would make
the next block larger than the 10 digits an HP-15C storage register can hold.

• The addition of each multi-block term to the running total is done using matrix
arithmetic in steps 16-18. Steps 19-25 increment the divisor and keep track of the
first non-zero block of each term to optimize speed by avoiding unnecesary
operations. Steps 26-31 and 57-64 perform the multiprecision division.

• The process ends when the current term has all its blocks equal to zero. As all
blocks always hold positive values, we can use an advanced matrix operation, the
Row Norm, to test for finalization, because in this case the Row Norm will equal
zero if and only if all block values are zero. This is tested in steps 34-37.

• Once this condition is met, the result matrix which holds the running sum is scaled
down for display using matrix-scalar arithmetic (steps 38-40). The computed
answer is then displayed by recalling each block in turn, adding the carry from the
previous block, and marking the last one negative (steps 41-56).

• As you can see, though simple, this program does use some of the HP-15C’s
advanced programming capabilities (as well as a trick or two), including basic
matrix operations (MATRIX 1), advanced matrix functions (MATRIX 7), recall
arithmetic (RCL÷ I), using registers as indexes including increment-and-test

operations (ISG 2) , auto-increment-test-and-loop matrix element access (uSTO
A, uRCL B), matrix arithmetic (steps 18 and 40), etc.

• Among the tricks, the use of the fast, 1-byte instructions STO RAN# and RCL
RAN#, demonstrating a way to store/recall a positive constant less than 1 without
using any regular data registers. As long as you don’t use random numbers (or
you don’t mind changing the seed at that point) this trick can save you a full
register, as well as being faster than having the constant repeated in your program
code.

Caveat emptor: It only works for numbers in [0..1). Try other values (Pi,
for instance) and see what happens on recall. This can be used for some
pretty efficient 10-power scaling)

Usage instructions

1) After keying in the program, make sure you’re not in complex mode (press CF
8 if in doubt), then you must commit enough storage registers to the common
pool for the matrix operations. To that effect, press:

2, f DIM (i)

2) Now, enter the number of 8-digit blocks you want to use, from 1 (8 digits) to

26 (208 digits). For example, if you want to compute 200 decimal digits of e,
you must specify 200/8 = 25 blocks. Start the program by pressing either

f PRGM, R/S or GSB A or (in User mode) A

While running, it will briefly show each succesive divisor used (2, 3, ...), then
once the computation is over, it will display each block of 8 decimal digits
(with an initial “0.”, in order to preserve leading zeros at the left end of the
block), starting with decimals 1st-8th. The very last block will be marked
negative, to signal the end of the output.

Let’s see an example: to compute the first 24 decimal digits of e, we specify
24/8 = 3 blocks, and proceed like this (in USER mode):

 3, A à (2.00000000) [divisor = 2]

 ... [after 2’26”]
 à (25.00000000) [divisor = 25]

 à 0.71828182 [decimals 1st- 8th]

R/S à 0.84590452 [decimals 9th-16th]
 R/S à -0.35360274 [decimals 17th-24th]

so, after adding a “2.” at the front and writing down all 8-digit blocks (that is,
minus the initial “0.” or “-0.”) in their proper order, we finally get:

e = 2.71828182 84590452 35360274

where, due to the accumulation of rounding errors during the process, the last
block of the computed answer comes out as “3536 0274” while correct is
“3536 0287”, so we have an error of 13 ulps (units in the last place).

3) Should you need to display the output again, press: GSB 4

Assorted results

blocks # decimals Max. divisor Time Last block Error (ulps)

1 8 12 40” 71828178 -4
3 24 25 2’26” 35360274 -13
5 40 35 4’43” 24977552 -20
13 104 73 19’55” 42742712 -34
26 208 125 62’43” 15738281 -60

As you can see, you can compute 100 decimal digits of e in your HP-15C in under 20
min., and 200 in under one hour. For 208 decimal digits, the final result is:

 e = 2.71828182 84590452 35360287 47135266 24977572
 47093699 95957496 69676277 24076630 35354759
 45713821 78525166 42742746 63919320 03059921
 81741359 66290435 72900334 29526059 56307381
 32328627 94349076 32338298 80753195 25101901
 15738281

The last block of the computed answer comes out as “1573 8281” while correct is
“1573 8341”, so the error is 60 ulps, and thus we’ve got 206 decimals fully correct.

Final remarks

Well, I certainly hope this commemorative article has revived fond memories of the
HP-15C and increased your appreciation of this finest HP-model. I‘ll consider myself
satisfied if you’ll contemplate the HP-15C in a different perspective from now on, as
the technical marvel and supreme engineering tour-de-force it actually is.

