
	

	 	

HP-41	M-CODE	
DEBUGGER	
User	Guide	

Mark	Power	

1986	

	 2	

Table	of	Contents	

1.	Introduction	..	3	

2.	Buffer	9	Format	..	4	

3.	DEBUG	–	Main	Entry	Point	...	5	

4.	START	-	Begin	Execution	at	Specified	Address	...	6	

5.	PRCPU	-	Print	CPU	Register	A,	B,	C,	M	and	N	...	7	

6.	FLAGE	-	User	Flag	Editor	...	8	

7.	STED	-	CPU	Status	Editor	..	9	

8.	RED	-	Register	Editor	...	10	

9.	BKED	-	Breakpoint	Editor	..	12	

10.	CONTBK	-	Continuation	from	a	Breakpoint	..	17	

11.	LCBUF	-	Locate	Buffer	Function	...	18	

12.	MKBUF	-	Make	Buffer	Function	..	19	

13.	CLRBUF	-	Clear	Buffer	Function	..	19	

14.	DELBUF	-	Delete	Buffer	Function	...	19	

15.	BUF?	-	Test	Buffer	Function	...	19	

16.	M+1,	M-1	-	Increment	and	Decrement	M	Function	..	20	

17.	XCAT	-	Extended	Catalogue	Function	...	21	

18.	DEBUG	Example	Use	...	22	

19.	DEBUG	High	Level	Design	...	24	

20.	DEBUG	ROM	Entry	Points	...	26	
	

	 3	

1.	Introduction	

The book 'HP41 M-code For Beginners' by Ken Emery has two debugging
programs: BREAK, is used to interrupt a M-code routine and dumps the CPU
registers into an area of main memory; LOOP, allows you to debug loops by
executing them a specified number of times before dumping the CPU
registers. Unfortunately, these programs are very restrictive, they can
only be used to view CPU values, not to change them before or during
execution.

The program 'DEBUG' gives the user more flexibility although it still has
a few limitations. The program is arranged as a main menu with several
editors and functions available from it.

The functions available in DEBUG allow:

• Execution of any M-code routine at a user specified address
• Editing of any of the five main 56 bit accumulators A, B, C, M, N
• Editing of the CPU status:

o Pointers P and Q
o The active pointer
o Machine code flags 0-7
o The G register
o The CPU mode - hexadecimal or decimal

• Printing the content of the main CPU registers
• Editing of the state of the 56 FOCAL user flags
• Setting up of up to 10 breakpoints
• The ability to continue execution from a breakpoint stop

DEBUG cannot be used to manipulate:

• The carry flag
• The T (tone) register
• Machine code flags 8-13
• The Key register
• The Key flag
• The selected RAM chip or peripheral device

For further details of the limitations see the section on breakpoints
(under BKED).

Additional functions are provided in the ROM to:

• Locate a buffer
• Test the existence of a buffer
• Make a buffer
• Clear a buffer
• Delete a buffer
• Increment or decrement M
• Give additional flexibility to the catalogue function

	 4	

2.	Buffer	9	Format	

The DEBUG program relies on the existence of Buffer 9. This is
automatically created by DEBUG and is used to hold all of the relevant
CPU information.

Physically Buffer 9 is located in main user memory below the .END. and
above the key assignments. It may be located by the function LCBUF for
manipulation external to DEBUG (see additional function sections 11-16).
 The format of Buffer 9 is:

Nybble
 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 --- R
 | 1| U| STK 2 |HD|PT| P| Q| G | ST | 6 e
 | <----------- N register --------------> | 5 g
 | <----------- M register --------------> | 4 i
 | <----------- B register --------------> | 3 s
 | <----------- A register --------------> | 2 t
 | <----------- C register --------------> | 1 e
 | ID | SIZE| U| U| STK 1 | BKPT | 0 r

Where ID = Buffer identifier = 99hex
 SIZE = Buffer size = 07hex
 U = Unused nybbles
 BKPT = Address of last breakpoint stop
 STK 1 = Bottom stack value at last stop
 STK 2 = Second stack value at last stop
 A,B,C,M,N = Five main 56 bit accumulators
 HD = Hex (0) or decimal (1) mode
 PT = Active pointer (P=0 Q=1)
 P,Q = Position of pointers P and Q
 G = G register (1 byte)
 ST = Machine code flags 0-7 (1 byte)

It should be noted that the MP-ROM includes a preservation routine which
ensures that the operating system does not delete Buffer 9 whilst it is
plugged in.

This enables testing to be continued even if the machine is turned off.
The buffer may be deleted manually with DELBUF if required and will be
automatically deleted when the machine is turned on without MP-ROM
present.

	 5	

3.	DEBUG	–	Main	Entry	Point	

To use the DEBUG program, MP-ROM should be loaded into a Q-ROM page. Then
all that is required is to XEQ'DEBUG.

The main menu prompt will then appear on the screen, 'DEBUG CMD ?'. The
following keys then become active:

ON Exit DEBUG and return to normal operational mode

B Enter the breakpoint editor - BKED (section 9)

C Continue from a breakpoint - CONTBK (section 10)

E Enter code at specified address - START (section 4)

F User flag editor - FLAGE (section 6)

R Register editor - RED (section 8)

S Status editor - STED (section 7)

ENTER Print main CPU registers - PRCPU (section 5)

	 6	

4.	START	-	Begin	Execution	at	Specified	Address	

To run a piece of M-code this routine is used. After pressing the E key
in the main menu, the user is prompted for a hexadecimal address, and
when this is confirmed by pressing R/S, execution begins at the specified
address. Correction of entered values is possible with the delete key.

The address specified may be anywhere in the 64K machine code address
space (0000-FFFFhex). The return address for DEBUG is placed on the stack
and up to three levels of subroutine calls are possible in the code under
test. DEBUG is re-entered when a RTN instruction is encountered and the
value on the bottom of the stack is that of the DEBUG routine.

For example, if we wish to run the operating system routine which enables
chip 00 (ENCP00):

 ADDRESS MNEMONIC COMMENT

 0952 C=0 S&X Set C[0:2] to zero
 0953 PRPH SLCT Deselect peripherals
 0954 RAM SLCT Select RAM chip 00
 0955 RTN Return

Then the user would enter the address 0952 at the prompt ENTRY @ ____ and
press R/S. DEBUG the loads up the CPU contents from Buffer 9 and performs
an NC XQ 0952 instruction.

When the RTN at address 0955 is encountered the CPU re-enters DEBUG,
stores all the CPU contents back in Buffer 9 and shows the main command
prompt. The CPU contents in Buffer 9 may then be displayed and edited if
required.

	 7	

5.	PRCPU	-	Print	CPU	Register	A,	B,	C,	M	and	N	

To print the contents of the main accumulators (or use the print commands
in any of the other functions) you will need either a HP82143A dedicated
printer or an HP-IL interface with some printing device (such as the
HP82162A printer, the HP82163B Video Interface or the ThinkJet).

These devices must be set to TRACE mode before printing can take place.
With the HP82143A this simply means setting the switch on the front of
the printer to TRACE, for HP-IL devices TRACE mode is set by setting user
flag 15 (this can be done either before entering DEBUG or using the flag
editor - see next section).

To print the values simply press ENTER at the DEBUG CMD ? prompt. The
output for the default values of Buffer 9 will be:

 CPU:
 C=10000000000000
 A=10000000000000
 B=10000000000000
 M=10000000000000
 N=10000000000000

Each digit represents a single nybble in the register.

	 8	

6.	FLAGE	-	User	Flag	Editor	

This function is called up by pressing the F key when the main menu
prompt is shown. The display will then show FLAG __ .

The user may then enter a two digit flag number in the same way that
flags are set or cleared using SF and CF. Any decimal flag number in the
range 00-55 may be specified.

Once a flag number has been entered, the flags current state will be
displayed with the words SET or CLR on the right hand side of the
display. To toggle the state of the flag all that is required is to press
the R/S key.

For example, suppose we have a HP-IL printer attached and we wish to set
it to TRACE mode to print the contents of the CPU, the following keys
would be pressed:

 DISPLAY KEY PRESSED

 DEBUG CMD ? F
 FLAG __ 1
 FLAG 1_ 5
 FLAG 15 CLR R/S
 FLAG 15 SET ON
 DEBUG CMD ?

Note that the ON key is used to return to the main menu and that FLAG 15
SET will appear automatically on the printer (as do all flag changes when
a Tracing printer is connected).

To change the value of more than one flag, simply continue entering flag
numbers. For example, suppose both flags 00 and 01 are clear and you wish
to set them, then you would perform the following:

 DISPLAY KEY PRESSED

 DEBUG CMD ? F
 FLAG __ 0
 FLAG 0_ 0
 FLAG 00 CLR R/S
 FLAG 00 SET 0
 FLAG 0_ 1
 FLAG 01 CLR R/S
 FLAG 01 SET ON
 DEBUG CMD ?

If a Tracing printer was connected during this operation, it would show
FLAG 00 SET and FLAG 01 SET. The display annunciators are also
automatically updated so 0 and 1 would appear in the bottom of the
display.

For use of the user flags refer to the HP41 Handbooks.

	 9	

7.	STED	-	CPU	Status	Editor	

This is entered from the main menu by pressing the S key. The status
information consists of two screens, one shows the position of the
pointers P and Q, and which of the two is active, and the other shows the
value in the G register, the ST register (machine code flags 0-7) and the
CPU mode (hexadecimal or decimal).

The main display set has the format PT=x P=p Q=q where x is the active
pointer P or Q, p is the position of pointer P and q is the position of
the pointer Q. Pointer positions are in the range 0-D hex (0-13 decimal).

The alternate display set has the format ST=st G=gg m where st are the
contents of ST, gg are the contents of G and m is either H or D
representing hex or decimal mode.

The following keys may then be used to change the information:

D Sets the CPU mode to decimal, the display shows the alternate
display set if it is not already shown, and decimal mode is
indicated with a D on the far right of the display.

H Sets the CPU to hexadecimal mode, shows the alternate display
set and indicates hex mode with an H.

G Selects the alternate display set and prompts the user for two
hex digits for the G register. An underscore alternating with
the old value indicates the users’ progress.

P Selects the main display set and prompts the user for a new
position of the pointer P (0-D representing nybbles 0-13).
The cursor alternates with the old value of P.

Q As P above but for pointer Q.

R Selects the main display set and prompts the user for the
active pointer. The cursor alternates with the previous
active pointer value. The user responds with either the P key
or Q key as appropriate.

S Selects the alternate display set and prompts the user for two
hex digits for the ST register (machine code flags 0-7).
Prompting is similar to G above.

R/S Toggles the display between the main display set and the
alternate display set.

ENTER Prints the currently shown display set on any printer in TRACE
mode.

ON Returns the user to the main DEBUG prompt.

	 10	

8.	RED	-	Register	Editor	

The register editor is entered by pressing the R key at the main DEBUG
CMD ? prompt. This editor allows the user to view and edit individual
nybbles within any of the five main accumulators (A,B,C,M,N).

In RED the display format is:

R:NN hhh,d,lll

Where R is the current register being edited
 NN is the current nybble number
 hhh are the three nybbles above the current nybble
 d is the current nybble which is being edited
 lll are the three nybbles below the current nybble

The registers are arranged in the following order:

 N M B A C
 13..00 13..00 13..00 13..00 13..00
 LEFT <- -> RIGHT

The starting position for editing is the nybble at C:00, thus to get to N
you must move left and to get from N to A you must move right.

In RED the following keys are active:

ON Return to main DEBUG menu

USER Move left one digit or one register if preceded by SHFT

PRGM Move right on digit or one register if preceded by SHFT

0..F Enter that value at the current position

As each digit is entered RED will move to the next digit on the right. If
the current position is C:00 then RED cannot move right and so it stays
at C:00.

	 11	

The following example shows how RED can be used to set up the registers.
Suppose we wish to set the M register to 32000000000000 and C to
10000000000888. We will assume that the registers are all in their
default state (i.e they contain 10000000000000).

 DISPLAY KEYS

 DEBUG CMD ? R
 C:00 000,0,990 USER
 C:01 000,0,099 USER
 C:02 000,0,009 8
 C:01 008,0,099 8
 C:00 088,0,990 8
 C:00 088,8,990 SHFT USER
 A:00 000,0,100 SHFT USER
 B:00 000,0,100 SHFT USER
 M:00 000,0,100 SHFT USER
 N:00 000,0,100 PRGM
 M:13 000,1,000 3
 M:12 003,0,000 2
 M:11 032,0,000 ON
 DEBUG CMD ?

If a Tracing printer is present, pressing ENTER would confirm these
settings:

 CPU:
 C=10000000000888
 A=10000000000000
 B=10000000000000
 M=32000000000000
 N=10000000000000

To reset the registers to their default settings the function CLRBUF may
be used from the normal operating mode (i.e from outside DEBUG). To do
this place 9 in the X register and XEQ'CLRBUF (for more information on
CLRBUF see section 13).

	 12	

9.	BKED	-	Breakpoint	Editor	

The breakpoint editor is entered by pressing the B key at the main DEBUG
prompt. The facilities provided in BKED allow for the creation of up to
ten breakpoints which enable the user to interrupt the execution of a
program at fixed points and edit the CPU contents.

Once the results have been checked and possibly altered, execution can be
made to continue from where it was interrupted. The mechanism to do this
is described in section 10.

There are a few technical points on what breakpoints are and how they
operate that you will need to know before being able to exploit these
facilities fully.

Breakpoints are inserted by DEBUG into your code at the address
specified. The actual instruction inserted is a class 3 'NC XQ BKPT'
where BKPT is an address in DEBUG.

There are several implications with using this type of instruction.
Firstly, the instruction overwrites two words of your code and so
breakpoints can only exist in pseudo ROMs (this term will be used to
refer to all types of MLDL and Q-ROM units). Breakpoints cannot exist in
actual ROMs because DEBUG cannot write to them.

The code that is overwritten is transferred into a breakpoint table in
the MP-ROM so that when execution continues all the correct instructions
are executed. Thus the MP-ROM must also reside in pseudo ROM.

Secondly, the instructions that cause the breakpoint stop ('NC XQ BKPT')
require that the carry flag is clear when they are executed.

This places restrictions on where breakpoints can be located. The size of
the breakpoint instructions also means that they cannot be placed over
instructions that are more than two words long.

Some places where breakpoints cannot be placed include: after class 0 and
2 instructions such as C=C-1 or ?A#C that may set the carry flag; where
the second word of the breakpoint would over write one of these class 0
or 2 instructions; over GOSUB and GOLONG instructions (3 word page
independent calls and jumps using the routines GOLONG, GOSUBH, GOSUB0
etc.); over MESSL type calls (i.e routines called like 'NC XQ MESSL' that
are followed by a string of text); over class 3 local relative jumps. In
addition, breakpoints should not overlap each other, that is they should
not be assigned to consecutive addresses.

DEBUG does not check for valid breakpoint addresses due to the variety of
instructions which may affect the carry and the fact that the programmer
may know that the carry is never (or always) affected by certain
instructions.

Generally, the safest place to locate breakpoints is after class 0
instructions which do not effect the carry and over two class 0
instructions the second of which always leaves the carry clear.

The example code below shows where breakpoints could and could not be
located (David Assembler Mnemonics are used):

	 13	

 ADDRESS MNEMONIC

 xA00 N=C
 xA01 C=C+A S&X
 xA02 RAM SLCT
 xA03 R=R+1
 xA04 LD@R F
 xA05 ?R= 0
 xA06 JNC -1F

Breakpoints could be located at xA01 as the 'N=C' instruction always
leaves the carry clear, however it would not be safe to place one at xA02
as the 'C=C+A S&X' may set the carry, thus avoiding the 'NC XQ BKPT'.
xA03 would be a safe place as again the carry is guaranteed to be clear
by the 'RAM SLCT'. xA04, xA05 and xA06 would not be suitable due to the
use of the carry flag and local (class 3) jumps.

When a breakpoint is created, it and all the others held in the
breakpoint table are enabled automatically. This means that if execution
reaches a breakpoint instruction, either from inside DEBUG or from
XEQuting a function under test, DEBUG will be re-entered.

Breakpoints may be disabled, so that execution is not affected. This
involves DEBUG automatically placing the overwritten code back in its
proper place.

Some or all breakpoints may be deleted, again the code overwritten by
breakpoint instructions is restored.

It is very important to remember that all breakpoints must only be
deleted by DEBUG (i.e not overwritten by an assembler or an editor) and
that all breakpoints should be cleared before saving a ROM to or loading
a ROM from a mass storage device.

If problems do arise by corruption of breakpoints then the easiest
solution may be to re-load MP-ROM and then re-load the ROM under test
(functions for ROM storage are not provided in MP-ROM but are available
in ZENROM and the MLDL EPROM set).

The breakpoint editor has two distinct levels: the top level is entered
by pressing the B key from the main DEBUG prompt or by pressing ON from
the lower level of BKED; the lower level is entered by pressing one of
the numeric keys, representing a breakpoint number, from the top level.

In the top level the display will show one of the following:

NO BKPTS This indicates that there are no breakpoints set up in the
system at present.

BKPTS OFF This indicates that there are breakpoints set up but they
are currently disabled.

BKPTS ON Indicates breakpoints are present and enabled.

	 14	

When the display shows one of these messages, the following keys become
active:

ON Returns the user to the DEBUG CMD ? prompt

ENTER Prints the display on any Tracing printers

C Disables and clears all breakpoints. The user is prompted
'SURE (Y/N) ?' to check that this is really required. If the Y
key is pressed, then all breakpoints will be cleared and the
display will return to showing 'NO BKPTS'. Otherwise the
display will return to its previous state with all the
breakpoints unchanged.

D Disables all breakpoints. The overwritten code is restored but
the breakpoint addresses are kept to allow them to be enabled
at some later stage.

E Enables all breakpoints. This is also done when a new
breakpoint is entered or when an existing breakpoint is moved.
If there are no breakpoints present the key has no effect.

0..9 Enter the low level editor for the breakpoint specified.

In the low level editor, the display shows:

BKPTn @ abcd

Where n is the breakpoint number and is in the range 0..9 inclusive and
abcd is the breakpoint's address. If the breakpoint specified is
undefined then the address field is displayed as four underscores (e.g
BKPT0 @ ____ indicates breakpoint 0 is undefined).

As mentioned earlier breakpoints may only be specified in pseudo ROM
pages and so BKED automatically checks addresses as they are entered to
ensure that they exist in a pseudo ROM page.

The lower level editor enables the following keys:

ON Returns to the top level of BKED.

ENTER Prints the currently shown breakpoint on any Tracing printer.

<- Deletes the breakpoint shown or the last digit entered during
breakpoint address entry.

R/S Terminates address entry if four digits have been entered and
sets up the breakpoint. Alternatively, if a set up breakpoint
address or four underscores are shown then R/S moves to the next
breakpoint in sequence. After breakpoint 9 has been shown R/S
returns the user to the top level of BKED.

0..F Are used for breakpoint address entry. Four digits are required
for a breakpoint address. The first digit, the page number, is
checked as outlined above to ensure it specifies a pseudo ROM
page.

	 15	

The example below shows how a breakpoint could be set up at address xA01
in the previous example code (we will assume that DEBUG is in its initial
state and the code is located in page D):

 DISPLAY KEYS COMMENTS

 DEBUG CMD ? B Enter BKED
 NO BKPTS 0 Assume default state
 BKPT0 @ ____ D Breakpoint 0 will be
 used. D is the page
 number.
 BKPT0 @ D___ A Rest of address
 BKPT0 @ DA__ 0
 BKPT0 @ DA0_ 1
 BKPT0 @ DA01 R/S Breakpoint set up
 BKPT0 @ DA01 ENTER Breakpoint printed
 BKPT0 @ DA01 R/S Go to next breakpoint
 BKPT1 @ ____ ON Empty, leave lower level
 BKPTS ON ON Enabled automatically
 DEBUG CMD ? Back at top level

The breakpoint mechanism uses conventional CPU instructions and so must
work within the restrictions of the four level stack. Thus although
breakpoints may be placed in subroutines, these subroutines should not be
nested more than two deep.

Note that this is in contrast to the normal operation of DEBUG where re-
entry will only occur if a RTN instruction is encountered at the same
level as the entry to the code.

The example below shows the worst case that BKED and CONTBK (described in
the next section) can handle correctly:

 LABEL MNEMONIC

 TST1: :
 :
 GOSUB TST2
 :
 RTN
 :
 TST2: :
 :
 GOSUB TST3
 :
 RTN
 :
 TST3: :
 :
 BREAKPOINT
 :
 RTN

We assume that entry is at TST1 and that within TST1, TST2 is called.
Similarly, it calls TST3 which contains a breakpoint. DEBUG is re-entered
and execution may be continued using CONTBK. Execution recommences at the
breakpoint in TST3, returns to TST2, then to TST1 and then back into
DEBUG with the RTN at the end of TST1.

	 16	

Any further levels of nesting (for example TST3 calling TST4 which
contains a breakpoint), would cause a loss of data from the stack and a
subsequent malfunction in the re-entry to BKED. In most cases this
should not cause any difficulties provided that all the limitations are
observed. In general it would be best to test TST3 separately rather from
TST2 or TST1. This would make debugging much easier in most cases.

	 17	

10.	CONTBK	-	Continuation	from	a	Breakpoint	

When a piece of code is entered normally there is no definite way of
telling whether or not a breakpoint will be executed, however if this is
the case, then re-entry to DEBUG is different to the normal type of
execution.

On a breakpoint re-entry, before the main prompt is shown, three other
messages will appear (these are also sent to Tracing printer devices):

STK1 @ abcd
STK2 @ efgh
BKPT @ ijkl

The R/S and delete keys are used to move through these messages. They
indicate the bottom two values on the stack when the breakpoint was
executed and the address of the breakpoint encountered.

If the user wishes to continue execution from the breakpoint stop,
possibly after viewing and altering the contents of the CPU registers,
then the C key should be pressed at the DEBUG CMD ? prompt.

CONTBK will then allow the user to confirm the re-start address when the
prompt CONT @ ijkl is shown (where ijkl is the same address as above).
The R/S key is used to confirm this address, whilst any other key returns
you to the main menu.

If the address is confirmed, then it is printed on any Tracing printers
and the stack pre-loaded with the STK1 and STK2 values. All other CPU
values are loaded normally. The overwritten code is run before the CONTBK
jumps to the word after the NC XQ BKPT which interrupted execution.

If an attempt is made to execute CONTBK when no breakpoint stop has taken
place or if the breakpoint which caused the stop has been deleted, then
the command will be ignored.

	 18	

11.	LCBUF	-	Locate	Buffer	Function	

This function may be used in the normal operating mode or in FOCAL
programs to locate a buffer. It requires a buffer number in the X
register and returns the buffer's main memory address to the M register.

The address is returned to the last two characters of the ALPHA register,
which corresponds to the bottom four nybbles of the M register. This
format is the same as that used by M+1, M-1 and the ZENROM functions
RAMED, NSTOM and NRCLM.

The NONEXISTENT error message will be given if the buffer specified does
not exist. Valid buffer numbers may be in the range 1-15.

For example, to locate buffer 9 for manipulation by RAMED: enter 9,
XEQ'LCBUF and then XEQ'RAMED.

The FOCAL program given below also demonstrates the use of LCBUF to find
the size of a buffer. It uses the ZENROM function NRCLM and the STO M
synthetic instruction (for details of synthetic programming see Synthetic
Programming Made Easy, the ZENROM Manual or Extend Your HP41).

Input to the program is simply a buffer number in X, the size of the
specified buffer is left in X:

 01 LBL'BUFSIZ
 02 CLA
 03 LCBUF
 04 NRCLM
 05 STO M
 06 ATOX
 07 ATOX
 08 END

	 19	

12.	MKBUF	-	Make	Buffer	Function	

This function creates a buffer from the header given in the M register
(the last 7 characters of the ALPHA register). For details of the
structure of buffer headers see pages 36-39 of the ZENROM manual.

In brief, the top byte of the header contains the buffer identity (which
is usually two identical nybbles) and the next byte down contains the
buffer size, in registers, including the header register.

So for example, to create a buffer with identity 4 and size of 32
registers (20hex), you would type:

CLA 'D{sp}ABCDE XEQ'MKBUF

The decoded value of M in this case would be 44204142434445, giving
ID=44, SIZE=20hex and additional header bytes 41 42 43 44 45hex.

Each register created in the buffer, except the header, is set to
10000000000000. This is done to avoid Bugs in the older Card Reader ROMs
(for more details see page 39 of the ZENROM manual).

If there is not enough room for the buffer, then the machine will try
PACKING and then suggest you TRY AGAIN. If the buffer size specified is
00 or if a buffer exists with the same ID but a different size, then the
error message DATA ERROR is given.

13.	CLRBUF	-	Clear	Buffer	Function	

This function accepts a buffer number in X and if the buffer exists sets
the contents of all the registers in the specified buffer, except the
header, to 10000000000000. Errors are given for the same reasons as in
LCBUF.

14.	DELBUF	-	Delete	Buffer	Function	

This function accepts a buffer number in X and if the specified buffer
exists, deletes it and packs the I/O and key assignment area. Inputs and
errors are the same as for LCBUF.

15.	BUF?	-	Test	Buffer	Function	

This function is used as a conditional test to determine the presence of
a buffer, specified in the X register.

If executed from the keyboard it returns YES or NO depending on whether
the buffer exists or not. If executed in a program, execution continues
at the next line if the buffer exists or skips a line if it does not.

If the buffer specified is greater than 999 then the error NONEXISTENT is
given.

	 20	

16.	M+1,	M-1	-	Increment	and	Decrement	M	Function	

These functions simply add or subtract one from the value in the M
register. This is a hexadecimal nybble operation on the whole word rather
than a normal floating point add with the '+' function.

They are used when the M register contains a buffer address produced by
LCBUF and it is necessary to move through the buffer one register at a
time.

The following FOCAL program demonstrates the use of these functions.
NRCLM and DECODE from ZENROM are used.

 01 LBL'GETC
 02 9
 03 LCBUF
 04 M+1
 05 NRCLM
 06 DECODE
 07 AVIEW
 08 END

This program locates buffer 9, moves the address pointer in M to the
first register, decodes it and displays it. The register shown is the one
containing the CPU C register value as used by DEBUG (see section 2 -
Buffer 9).

As a further example of the use of these functions, the program below
could be used to load up specific values into Buffer 9 for use by DEBUG.

 01 LBL'LOAD9
 02 CLA
 03 9
 04 LCBUF
 05 M+1
 06 ASTO L
 07 '12345678901234 <- Value to go in C
 08 XEQ 01
 09 '23456789012345 <- Value to go in A
 10 XEQ 01
 11 '34567890123456 <- Value to go in B
 12 XEQ 01
 13 '45678901234567 <- Value to go in M
 14 XEQ 01
 15 '56789012345678 <- Value to go in N
 16 LBL 01
 17 CODE <- Code the value
 18 CLA
 19 ARCL L <- Get the address
 20 NSTOM <- Store the value
 21 M+1 <- Point to next reg
 22 ASTO L <- Save new address
 23 END

This program can be changed to fit the individuals’ requirements. To do
this the values on lines 07, 09, 11, 13 and 15 should be changed. The
basic structure should however remain the same.

	 21	

If it is necessary to have several sets of set up values, then the
program could be changed to get its values from Extended Memory ASCII
files (this would also allow changes to be made very easily using the
HP41CX ED function).

	

	

17.	XCAT	-	Extended	Catalogue	Function	

This function is simply an extension to the inbuilt CAT function. In
addition to being able to perform the normal CATs 1,2 and 3, the ROM
function catalogue (CAT 2) is extended so that it can be started at any
page.

XCAT prompts for a catalogue number with:

XCAT (0-F) _

Pressing 0-4 will have the same effect as the normal CAT function.
Pressing 5-F will start a CAT 2 at the specified page. If a ROM is not
present in the page specified, then NONEXISTENT is given.

Operation of the catalogue, once it has started, is exactly the same as
for the normal CAT function (this means BST will take you back to the
previous entry etc, and the modified operation of the HP41CX is as
normal).

	 	

	 22	

18.	DEBUG	Example	Use	

The following is given as a very simple example of DEBUG in use.

Suppose we wish to test a piece of code that simply loads values into the
main accumulator C. The contents of C will initially be unknown and when
the code finishes will be C = 10000000001FFF.

The code to do this would be:

 ADDRESS MNEMONIC COMMENT

 EF00 C=0 ALL Clear the whole register
 EF01 C=C+1 MS Set mantissa sign to 1
 (C = 10000000000000)
 EF02 C=C+1 M Set mantissa to 1
 (C = 10000000001000)
 EF03 SETHEX Set CPU to hexadecimal mode
 EF04 C=C-1 S&X Set exponent & sign to FFF
 (C = 10000000001FFF)
 EF05 RTN End of routine

To test the code, we may want to begin execution at EF00, have a
breakpoint at EF02 to check partial operation, complete execution and
check the final register contents. To check that it does not matter what
the contents of C are before we start we shall set it to all 2s.

The user would perform the following steps:

KEYS PRESSED DISPLAY COMMENT

XEQ'DEBUG' DEBUG CMD ? Enter the Debugger
F FLAG __ User flag editor
15 FLAG 15 CLR Turn on the printer
R/S FLAG 15 SET Printer on
ON DEBUG CMD ? Return to menu,
 prints "FLAG 15 SET"
B NO BKPTS Breakpoint editor
0 BKPT0 @ ____ Breakpoint 0 unknown
EF02 R/S BKPT0 @ EF02 Breakpoint set up
ON BKPTS ON Breakpoints are active
ON DEBUG CMD ? Return to main menu
R C:00 000,0,990 Enter register editor
SHIFT USER PRGM C:13 000,1,000 Load C with all 2s
22222222222222 C:00 222,2,990 Display and position
 change as 2s keyed in
ON DEBUG CMD ? Return to main menu
ENTER DEBUG CMD ? Print CPU contents,
 shows C=22222222222222
E ENTRY @ ____ Enter code at address
EF00 ENTRY @ EF00 required
R/S STK2 @ 00F0 Runs to breakpoint
R/S STK1 @ DBF5 Displays the stack
R/S BKPT @ EF02 And breakpoint address
R/S DEBUG CMD ? N.B Stopped prior to
 executing word at EF02
ENTER DEBUG CMD ? Print CPU contents,

	 23	

 shows C=10000000000000
S PT=P P=0 Q=0 Shows pointer data
R/S ST=00 G=00 H Shows other status
D ST=00 G=00 D Set decimal mode
ENTER ST=00 G=00 D Print screen
ON DEBUG CMD ? Now continue execution
C CONT @ EF02 Confirms address
R/S DEBUG CMD ? Prints Continue addr,
 execution finishes
ENTER DEBUG CMD ? Print CPU contents,
 shows C=10000000001FFF
S PT=P P=0 Q=0 Enter status editor
R/S ST=00 G=00 H CPU changed to
 hexadecimal mode
ENTER ST=00 G=00 H Print screen
ON DEBUG CMD ? Return to main menu
B BKPTS ON In breakpoint editor
C SURE (Y/N) ? Clear all breakpoints
Y NO BKPTS All cleared
ON DEBUG CMD ? Return to main menu
ON 0.0000 Return to normal mode,
 printer shows .END.

This example although trivial in nature shows most of the features of
DEBUG. To actually enter and correct M-code programs it is necessary to
use some other tool such as ZENROM or the DAVID Assembler. It should be
noted that DEBUG sessions can be continued even if the machine is turned
off or used for some other purpose during debugging (all the relevant
information is 'hidden' in a protected area of memory).

	 	

	 24	

19.	DEBUG	High	Level	Design	

In this section the high level design of DEBUG is described briefly. As
was mentioned earlier DEBUG has a hierarchical structure. From the main
menu it is possible to access several sub-menus.

The system was built up from the most necessary components first, this
made testing easier and allowed the simpler parts to be used to test the
more complicated parts.

The first routines written were: CPU>B9, used to dump the CPU contents
into a buffer (buffer number 9) for editing; B9>CPU, used to load the CPU
with the contents of buffer 9; START, to get an entry address, load the
CPU using B9>CPU, enter the code at the address specified and dump the
final CPU contents using CPU>B9.

These three main subroutines use many other smaller routines and
operating system routines. The routine MLOCB was actually the first
written, it finds the location of buffer 9 in user RAM and is used not
only in the routines above but by most of the sub-menu functions.

Many other subroutines were necessary to implement START which were also
useful in other sub-menu functions. These included routines for display
and keyboard handling, input string handling, and pseudo ROM access.

The remainder of the system was coded and tested using these basic
functions. When testing of each function was complete, the appropriate
access call was added to the main menu.

The sub-menu functions are:

FLAGE The FOCAL flag editor allows the user to toggle any of the 56
user flags from within DEBUG. All display annunciators are
automatically updated as they would be in normal operation of
the machine.

STED The status editor enables the user to view and change the
contents of the ST and G registers, the positions of the
pointers P and Q, the active pointer and the arithmetic mode of
the CPU.

PRCPU Prints the contents of the five main accumulators.

RED Allows the user to edit the five accumulators.

BKED Enables up to ten breakpoints to be set up in any pseudo ROM
page which will temporarily halt execution if they are
encountered, thus allowing the user to view or edit CPU
contents and then continue.

CONTKB Allows execution to continue from a breakpoint.

These functions and START, are accessed from the main menu by typing the
first letter of the routines name (with the exception of PRCPU which is
called by the ENTER key to retain consistency with ZENROM).

	 25	

This consistency of operation was maintained throughout DEBUG, so that
for example once in the status editor to change the position of pointer
P, you simply press the P key.

Printing of DEBUG information is achieved by pressing the ENTER key when
the required information is shown on the display. The R/S key (Run/Stop)
is used throughout to confirm inputs and toggle the display between
alternatives. Similarly the delete key can be used in most circumstances
to delete the last value entered. This philosophy makes DEBUG very easy
to use.

	 26	

20.	DEBUG	ROM	Entry	Points	

The following table gives the addresses and a brief description of all
the separate routines in the ROM. Routines are listed in address order.

NAME LOCATION ENTRY FUNCTION

MARKS 1B 084-08C 08C ROM header
-DEV FNS 08D-095 095 Header for DEBUG functions
M+1 096-09C 099 Increment RAM address in M
M-1 09D-0A3 0A0 Decrement RAM address in M
DSPRPC 400-467 400 RED Display register,
 position and contents
RED 470-4E4 470 RED Main program
XCAT 500-584 504 Extended Catalogue function
TKEYH 58C-5AF 58C Get hex key (timeout 1sec)
MAIND 5B0-5EE 5B0 Main status display of STED
ALTD 5EF-644 5EF Alternate display for STED
TKEY 645-655 645 Get any key (timeout 1sec)
KEYDBU 656-664 656 Key debounce & wait for up
SURE 665-67E 665 Ask user if SURE (Y/N)?
DABKPT 67F-6AD 67F Disable All Breakpoints
ENBKPT 6AE-6D5 6AE Enable All Breakpoints
CONTBK 6D6-74B 6D6 Continue from Breakpoint
DBI 74C-76D 74C Display BKPTn Information
EDBN 76E-82E 76E Edit BKPTn (low level edit)
PRCPU 82F-8A1 82F Print main CPU registers
STED 8FF-A20 903 CPU Status editor main body
DEBUG A27-A94 A30 Entry to DEBUG & main menu
BKED A95-ADA A98 Breakpoint editor top level
GETNYB ADB-B00 ADB Get nybble from buffer 9
 for the register editor
OUTHEX B14-B4C B14 Output hex digits & '_'s
START B4D-B99 B4D Get address & run code
GETDRS B9A-BA7 B9A Get delete or R/S keys
B9>CPU BA8-BFF BA8 Transfer buffer 9 to CPU,
 enter code, RTN or BKPT
CPU>B9 C00-C74 C00 Transfer CPU to buffer 9
FINDF C75-C8E C75 Find a user flag for FLAGE
GETHXA C8F-C96 C8F Get a hex keypress in A S&X
MK9 C9A-CA3 C9A Finds/makes/finds buffer 9
FIND9 CA4-CAB CA4 Finds buffer 9 or gives NO
 BUFFER error
ERRNB CAC-CC0 CAC NO BUFFER error routine
WRC1 CC1-CD8 CC1 Write Class 1 instruction
ADDDIG CD9-CE4 CD9 Add digit to input string
DELDIG CE5-CF2 CE5 Delete digit from input
FPT CF3-CFF CF3 Find pointer position

	 27	

NAME LOCATION ENTRY FUNCTION

MLOCB D00-D1E D00 Locate buffer subroutine
LCBUF D1F-D3F D24 Locate buffer function
MKBUF D40-D46 D45 Make buffer function
MMKBF D47-D76 D47 Make buffer subroutine
BUF? D77-D8A D7B Function to test buffer
CLRBUF D8B-DA1 D91 Function to clear a buffer
DELBUF DA2-DBA DA8 Function to delete a buffer
FLAGE DBB-E49 DBB User flag editor
CE9 E4A-E4E E4A Check for BKPT or RTN
RBKPT E4F-EE3 E4F Return from BKPT
DBN EE4-EF7 EE4 Display BKPTn @
B0-B9 EFF-F13 none Breakpoint address table
RB0-RB9 F14-F3B none Breakpoint overwritten code
DBS F3C-F8D F3C Display breakpoint status
DAFN F8E-F94 F8E Disable & find BKPTn
FINDBN F95-FA0 F95 Find BKPTn in table Bn
-none- FAE-FFF o/s Buffer preservation, sign
 on message, power down IL,
 ROM trailer

